If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+10n-860=0
a = 1; b = 10; c = -860;
Δ = b2-4ac
Δ = 102-4·1·(-860)
Δ = 3540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3540}=\sqrt{4*885}=\sqrt{4}*\sqrt{885}=2\sqrt{885}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{885}}{2*1}=\frac{-10-2\sqrt{885}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{885}}{2*1}=\frac{-10+2\sqrt{885}}{2} $
| n^2-17n-860=0 | | 2(x^2+7)/3=13 | | 5x-9x=-3-5 | | 9x-5x=3-5 | | 9x-5x=5-3 | | 6^(5-2x)=4 | | 2(2x-1)=3(3x-4) | | 3(3x-12)=2(2x-1) | | 4x+8=67 | | 5x+5=9x-1 | | (2x-8)(3x-10)=17 | | 7x(x-5)=3(x+1) | | 4x-2=43-x | | 22k+70k=17k-95 | | 4x-5=(2x)(2x) | | (2x-15)=9+7 | | 5y+15=83 | | 12+v=29 | | 5y^2+6y-4=0 | | 180+55=x | | 55+55=x | | 0.28x=0.28 | | 2(2x+4)-5=3 | | 3(6y+7)=24 | | 3(6y+7)=21 | | X^3+8x-20=0 | | 8(7y+3)=34 | | 2(5y+6)=24 | | 2(5y+6)=10 | | 3(5y+8)=50 | | -20x+5000=10x+800 | | 3(8x+9)=-12 |